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ABSTRACT 
The cumntly common sequential design process for engineering systems is likely to lead to 

suboptimal designs. Recently developed decomposition methods offer an alternative for coming 
closer to optimum by brtakkrg the large task of system Optimization into smaller, concurrently 
executed and, yet. coupled taslrs. identified with engincaing disciplines or subsystems. The 
hierarchic and non-hiaaxchic decompositions are discussed and illusuated by examples. In 
conclusion, an organimion of a design process centered on the non-hierarchic decomposition is 

INTRODUCTION 
There is a growingrealization that in complex engineering systems the mastery of the interactions 

among the disciplines and subsystems is as important for successful design as technologies used 
in any individual discipline or subsystem. Examples abound in nuclear industry, advanced ship 
building, and automobile manufacarring, with aclassic case provided by hypersonic aircraft design. 
Unlike in a conventional transport aircraft where optimal use of such interactions could make a 
difference between a very good and merrly good vehicle performance, in hypersonic aircraft it 
may make the difference between flying and staying on the ground- 
Early aaempts to solve the problem by wrapping an optimization loop around a set of computer 

programs comsponding to the governing disciplines proved disappointing (ref.1) for reasons clear 
in retrospect That approach tended to exclude the human intellect from the process, and the 
computational rime and cost of repeat& executions of coupled disciplinary analyses was prohibi- 
tive. Most importantly perhaps, the approach disregarded the engineers' thoroughly practical desire 
to form specialty groups, each group assuming responsibility for part of the design problem in 
exchange for a professional independence in the choice of means to do the job. It appears that the 
lag in large scale optimization applications behind the progress in optimization theory observed, 
for example, in a survey given in ref2, may be amibuted, partly. to the shortcomings of the above 
approach 

Stimulaf.ed by a realitation that a different approach is needed, efforts have recently been 
increasing to develop methods that would bring to the e n b  design process the same mahematimi 
efficiency, consistency, and rigor that have been achieved by computational methods in the 
conmbuting engineering disciplines while allowing a speaahst to ntain responsibility for a part 
of the entire task within his domain. The intuitively obvious and wellestablished practice of 
breaking a large task into smaller ones, together with an array of mathematical methods reviewed 
in ref.3, form a basis for a new approach that has begun producing a new methodology and a 
growing application experience, e.g., ref.4, and re f5  
This paper outlines two algorithms for bringing optimization into engineering system design: the 

hierarchic decomposition and non-hierarchic decomposition, originally introduced in nf.6, and 
ref.7, ref.8, respectively. A hierarchic decomposition leads to separate optimizations, supported by 
their own sensitivity analyses, for each part of the system. The non-hierarchic method applies 
decomposition to the system analysis and sensitivity analysis only, that is to the part of optimization 
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responsible for more than !W% of the total cost in large system applications. The optimization itself 
remains undivided but becomes linearized so that it may be effectively solved for a very large 
number of design variables. 

The two methods are presented as alternatives to the currently prevalent sequennai decision 
making in design which is shown, according to ref.9, as leading to subopnmal results. They are 
illustrated by application examples. 

SUBOPTMALXTY IN SEQUENTIAL DESIGN PROCESS 
The prevalent practice in today's design process is to make major decisions sequentially. An 

exception is the early conceptual stage where the major discipiines are given simultaneous 
consideration but the analyses are simplified and, therefore, may not reliably idenhfy an optimal 
design. After that stage the process setrles into a historically evolved sequence illustrated in Fig.1 
for aircraft as an example. The boxes in the figure symbolize major disciplines, the inner loops in 
each box stand far iterative disciphuy optimizations (judgmental and fonnd) that maniprlate 
local design variables toward betterment of some disciphaxy objective such as minimum weight 
within constraints. The outer loops linking the boxes imply intadiscipllnary optimizations toward 
improving the aircraft performance wittun constraints For graphic simplicity the partial overlap 
of the boxes in time that usually Qkes place is not shown. 

I NTERDI S C I  PL I NARY ITERATIONS 

lNTRADl  S C l  PL INARY [ ITERATIONS 

... 

DI  SCIPLINES: AERODYNAMICS STRUCTVRES AEROELASTICITY, ETC. 

Figure 1. Sequential design process. 

Critique of the process depicted in Fig 1. is given in ref.9 asserting that it must lead to suboptimal 
results. The assertion is based on the premise that the time and budget conshaints on the process 
usually render the outer optimization loops impossible. or at least impractical, to execute. In the 
absence of the system level feedbacks, design decisions made upsueam resmct the design M o m  
downsneam. The d t  must be an underperfoming design, as shown in ref.9 using a generic 
example illusnated next 

The example Fig.2) is that of a hypothetical aimaft whose design optimization is reduced for 
the discussion purposes to a plot of the contours of a performance measure, P. e.g., payload for a 
given range, and two performance constraint boundaries (infeasible side cross-hatched), C1 and 
C2, e.g., rake-off field length and the rate of climb, as functions of the wing aspect rario, AR. and 
the wing structural minimum weight The aspect ratio is one of the design variables typically set 
early in the process (Fig.1, AERODYNAMICS), pNnanly on the basis of aerodynamic considera- 
tions. The minimum structllral weight may be regarded as a synthetic measure of a multitude of 
cross-sectional sizing variables decided in the discipline of structlnes (Fg.1, STRUCTURJ3). 

By inspection, the point 0 1  is the consnained maximum of P. However, as the process in Eg.1 
continues additional consnaints may be found critical, for instance, a flutter speed consnain~ C3, 
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Figure 2 Example of an aircraft design design space with constraints. 

shown in Fig.3. The added constraint invalidates the previous optimum at 01 and establishes a 
new one at 03. However, in the sequential process the AR may have already been h z e n  (the 
aircraft confguration decided) so that the only design freedm still available to deal with the 
additional constraint is to resize (or to mass balance) the structure paying a weight penalty 
represented by moving from 0 1  to 0 2  in Fig.3. The point 0 2  corresponds to a new design located 
on a P contour lower than the one passing through point 03. The Werence of the P value between 
the mntom passing through the points 0 2  and 0 3  measures the penalty loss relative to the 
perfomce that would be attainable if the AR was still available as a design variable at the time 
when the additional consnaint was discovered. 

The performance loss is relative - the perfomance at the point 0 2  may s t i l l  be very good but not 
as good as it might have been if one of the design variables were not elirmnated. It is in this relative 
sense, or in the sense of the potential left unused, that the design obtained in a process of sequential 
elimination of design variables must be suboptimal. 

~~~ 

ASPECT RATIO, R 

Figure 3. Adding another consmint 
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The suboptimality is a symptom of what in ref.9 is termed the paradox of the sequential decision 
making in design. The paradox stems from the disparity, ill& in Fig.4. between the accumula- 
tion of the knowledge about the object of design ( v e m d  axis), brought about by the analysis and 
experimentation. and the gradual reduction of the design freedom (vertical axis). resulting from 
&zing of the design variables. that occur as the design process progresses in time (horizontal 
axk). The paradox is that the knowledge underlying the design inaeases but the ab* to act on 
that knowledge decnases. A 

look 

KNOWLEDGE ABOUT 
THE OBJECT OF D E S I G N  

0% t 

T I M E  INTO D E S I G N  PROCESS 

Figure 4. Paradox of the sequennal design. 

IMPROVING THE DESIGN PROCESS BY DECOMPOSITION 
One remedy to the paradoxical situation depicted in Fig.4 is to make the knowledge curve rising 

steeper in order to have more information for acting on when the design freedom is still high. The 
wellestablished practice smves to accomplish this at the early design stages by generating 
information about the major aspects of the problem very rapidly but at the price of using superficial, 
simplified analysis, e.g., hfting line theory and statistical structural weights in aerodynamics and 
smctmts, respectively. This approach, enhanced with human judgment, is quite adequate in 
closing the inner and outer feedback loops shown in Fig. 1 in conventional projects well grounded 
in the past experience. However, its reliability is questionable in far-out projects, e.g., a hypersonic 
aerospace plane, or a space station. for which such experience is lacking and must be made up by 
increased depth of analysis. 

Rapid progress in computer technology provides increasingly powerful means for bringing deeper 
analysis into earlier stages of design but, obviously, there are limits to the knowledge cuve 
steepness. Therefore the growing importance of the other remedy of reraining m m  design freedom 
at the later design stages - that is m a h g  the design M o m  curve tlam. 

HIERARCHIC DECOMPOSITION 
One of the means for the above is a hierarchic decomposition which applies if the system can be 

divided into a set of "black boxes" forming a hierarchy shown in F i g 5  The "black boxes" represent 
either the physical subsystems, e.g., aircraft structure and engine, or the dsciplines, e.&. 
aerodynamics and strucrlnal mechanics, and in both cases, for discussion purposes, the "black box" 
is simply a data converter that msforms input into output, e.g., load, geomeuy, material input 
data to displacement and stress output data in structural analysis. It is the input/output data flow 
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that determines the type of decomposition. In a hierarchic decomposition depcted in FigJ, that 
flow is vertical, no dara are transmiaed between a pair of "black boxes" located at the same 
decomposition level. 

Figure 5. Hierarchic decomposition of a system. 

Multilevel Optimization by Hierarchic Decomposition 
A multilevel optimization method defined in ref.6 exploits the above hierarchy by transmitting 

the analysis results in the topdown direction and the optimization results in the opposite direction. 
Let us define U as the output vector from a particular "parent" and V as the input vector into that 
parent's "child" at the lower level. In a hierarchy comprising more than two levels, the child is a 
parent to a child at the next lower level, and so on, recursively. Then, U becomes V in a recursive. 
"parent-to-child" progression of analyses that extends top-down to the lowest level. The opcimiZa- 
tion operation begins at that level and flows upward subjecting each black box to a separate 
optimization using its own, unique, vector of design variables. The design variable vectors are 
recursively named for each parent-child pair: X in the parent and Z in the child. The analysis of 
the parent defines its U as a Function of X, U = U O .  

A child optimization executes using design variables 2 For a particular constant V = Vo whose 
elements become the optimization parameters. Consequently, the ophmd values of F and design 
variables Z can be written as: 

Fop = Fopr(V); Zopt = zOpr(V); (1) 

These functions are. of course, not available in an explicit analytical form but their derivatives 
dFopVdVi and dZopt/dVi, called the derivatives of optimum with respect to parameters, may be 
obtained by means of an algorithm introduced in ref.10 and ref.11. These derivatives are a key 
element of the decomposition because they make it possible to approximate the functions Fopto 
and Zopt(V) by a linear extrapolation 
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where Fo and Zo stand for Fopt and Zopt obtained for constant values of parameters Vo. 
Moving now h m  a child to its parent black box optimization, one may use eq.2 and 3 and the 

relations 
v = V(x);  v o  = uo: (4) 

substituted into 4 2  and 3 to approximate the Fopt and Zopt as functions of X.by extrapolation 

The coupling represented by the chain of eq. 1 through 6 is recursive in the sense that it applies 
to any parent-child pair throughout the hierarchy. Further derails are available in ref.6 but the key 
point is that these recursive relauons transmit the information about the effect of the tugher level 
design variables on the lower level objective and variables to the very top of the hierarchy (Fig.5). 
That means that the optimization in the top black box representing the entire system may be 
performed with a limited set of the system level design variables and, yet, it will be sensitive to the 
influence of these variables on every black box making up that system. 
The above hierarchx decomposition was referred to in ref.6 as a linear decomposition because 

of its dependence on linear extrapolations ( eq2 .3 .5 ,  and 6) and was demonstrated in ref.12 on an 
example of a framework structure. It was also used as a basis to formulate an algorithm for a 
strucamd optimization by substructuring in ref.13. 

Applications 
Amultidmiplinary application of the method, reported in ref.14, involved optimization of a wing 

of a passenger transport lilTcr;lft of a wide body class shown in Fig6 (left) and proved effective in 
handling a very large number of design variables and constraints in a problem that required 
computationally expensive analyses. The optimization objective was to minimize the fuel con- 
sumption for a typical mission, while satisfying the consnaints drawn from the disciplines of 
structures, aerodynamics, and performance, the respective examples being stresses, displacements, 
transonic wave drag rise, take-off roll length, and range. 

The system decomposition resulted in a hierarchy depicted in Fig.7 with the aircraft performance 
analysis and optimization, including aerodynamics, at the top level, srruccural analysis and 
optimization at the middle level, and the individual wing cover panel analyses and optimizations 
(total of 316 panels) represented at the bottom level Analysis depth was characterized by the use 
of: an energy-based flight mechanics in the perfcfnnance evaluation, a semiempirical drag calcula- 
tion and the Computational Fluid Dynarmcs (CFD) methods in aerodynamic analysis, a finite 
element model shown in Fig.6 (right) in the wing box analysis, and closed form expressions for 
evaluation of local buckling in the individual cover panels. The corresponding design variables 
included the adoil relative thickness (depth-to-chord ratio) at the top level, stiffened wing cover 
equivalent thickness distribution at the middle level, and the demled cross-sectional dimensions 
of the wing cover slan reinforced by smngen at the b o r n  level. The fuel consumption was the 
objective function in the top level optimization. The purpose of each of the middle and bottom 
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Figure 6. A transport aircraft and its finite element model. 

level optimizations was to minimize the constraint violation (maximize the constraintsatisfactiow. 
For this purpose. all the constraints in a black box were represented by a single function called the 
cumulative constraint which was usedas the objective. Nonlinear mathematical programing (”) 
was h e  optimization tool at every level Examples of the analysis output uansmiued from the top 
down and the optimization infomarion passed from the boaom up are given in Fig.7 keyed to the 
numerals inscribed by the arrows. 

Aerodynamic loads 1 

Minimized cumulative 3 ’ 

8 Aircraft performance & 
Edge forces 9 aerodynamic analysis 

Airfoil relative thickness 
constraint 1v I h 4  I Fuel consumption 

@ Structural finite 
element analysis 
Wing cover 
equivalent skin 

‘ 1  I 
Minimized cumulative 4 

constraint & its optimum 
sensitivity derivatives 

. . .. &/.i;iCoveri-Q , 
thicknesses 

8, local buckling of 
the wing cover 
panel 
Detailed dimensions 
of the cross-sections 
for each panel 

u v -  ‘ r  panel ,: .I @ Strength, buckling 

Figure 7. Example of a hierarchic, thne-level decomposition of aircraft system 

A sample of the voluminous results given in ref.14 is illustrated in Fig.8. It shows the method 
convergmg at a rather rapid rate to the same end state from two deliberately varied starting points. 
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The dosu~ess of theend sfaft to theaaual aircraft design that was extensively optimized by orha 
means validated the p t s e n t  method 

220 x 103 90 x lo3  

21 0 o Case I 80 0 Case 1 
o Case2 o c a s 2  y n g  70 

190 Ibs 60 
180 50 
170 40 

weight ‘Block fuel 200 

0 2 4 6 8 101214 0 2 4 6 8 101214 
Cydes cydes 

Figure 8. H I S Z O ~ ~ S  of three-level Optunization of a nansport aircraft; cases 1 and 2 initial 
design mfeasiile and feasible, respectively. 

The above application broke new ground on three ~ccounts. Firstly. it established that optimiza- 
tion with a large number of design variables, 13W.  and mnstraints. 19OOt. involving a compura- 
tionally intensive analysis (a finite element model of 1SOO-t elastic degrees of freedom) could be 
e f f ~ v e l y  solvedusingdecomposition tobreakthelargesingleNLPtaskof 13o(kdesignvaxiables 
into a set of smaller NLP tasks none of whch exceeded 7 design variables. Without decomposition 
the problem computarional size was far beyond the bounds commonly regarded as practical. 
Secondly, it showed that a design detail (smctural sizing) may be mathematically hked u) the 
system performance (aircraft fuel consumption and flight consuaints), with the linkage spanning 
several disciphes (srrucm, aemdynarnics, aircraft performance). Previously, that linkage has 
never been available at the level of analysis used in ref.14. FmaJly, it developed a parallel 
organkAon of separar.e optimization tasks at the bonom level that could have been executed on 
concurrently operating computers (a single computer was used in the study). The amenability u) 
concurrent processing that in hierarchic decomposition extends, in principle, u) all levels except 
the top one as one may see in Fig.5, makes the method inherently compatible with the modem 
technology of &smbuted computing and with the ~ t ~ ~ a l  human organization of specialty groups. 

Determining a System Decomposition. 
A prcrequisile KI optimization by decomposition is development of a hierarchy such as the one 

shown in Fig5 This implies that h e  entire tasb: at hand is “granular” - naturally separable into 
sub& - and that each subtask falls into its place in the hierarchy. The panularity is usually 
obvious, suggested by the existence of specialty p u p s  and by major analysis tools each forming 
a core of a subtask and by &vision of the object of design into the physical subsystems. Each 
subrask proper place in the hierarchy is obvious in the design projects f r n l y  rooted in the past 
experience, as was the airliner study in ref.14, but it may not be so obvious in attempting a new, 
unprecedented design such as an actively controlled space smcture descn’bed i n  ref. 15. The design 
called for suuctural lmensioning of the lattice column seen in Fig.9 prouudmg out of the Space 
Shunle Orbiter and for a synthesis of the control system luniting the lattice column defonnations. 

In this case, the hierarchic decomposition scheme was built using a formal method which wmked 
as follows. A set of E; canhdate modules (subtasks) are identifed and placed, first in a random 
order, as square boxes on the &pond of a diagram shown in Fig.10. The diagram is called the 
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Nsquare diagram and under its formalism each square box horizontal sides represent its input pons 
while the output ports are represented by the venical sides. A transmission path of an output h m  
a module to its successor module is symbolized by a horizontal line emanating to the right h m  
the right hand side of the box representing the some module. At a dot marking an intersection 
with a vertical line the data nansnission path turns VQtiCal and continues to a receiving module. 
Such data connections, called the feedforwad data paths, identify for each source module one or 

Figure 9. A flexible. actively conaolled space shucflllc. 

I I I II 

111 
/c i h i E ! ! l ! ! l  II 

I 
Figure 10. Modules randomly strung in a Nsquare Diagram 

. 



more successor modules that execute after the source module. There are also instances when a 
module sends data back LO one or more of the preceding modules along the feedback paths that can 
be seen below the diagonal in the diagram. 

a- 
n 

Level 1 

Level 2 

Level 3 

1 1 1  
I 

4 

I 1 ,  
5 

I 

6 

7 9 

El Level 4 

Figure 11. Modules organized in clusters (top) forming a hierarchic system (bottom). 

For a set of modules randomly grouped as in Fig.10 no particular decomposition organization is 
visible but one may idenufy a hierarchic decomposition for it by means of a computer-aided formal 
procedure described in ref.16. The procedure systematically permutares the rows and columns in 
the Nsquare dugram. driven by rules that incorporate the principle of hierarchic decomposition 
according to which no module may send or receive data from another module at the same level. A 
typical result from ref.16 is shown in Fig.11 (top). It shows the modules regrouped so that the 
occurrences of the feedback have either been eliminated or limited to the clusters which, themsel- 
ves, are linked only by the feedforward data paths. The clusters may now be represented as black 
boxes in a hierarchic decomposition comprising four levels as illustrated in Fig. 11 (bottom). The 
modules inside a cluster constitute a non-hierarchic system discussed next.. 
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NON-HIERARCHIC DECOMPOSITION 
Some engineering systems cannot be decomposed into a purely hierarchic pyramid of modules 

because no reshuffling of the modules in the Nsquare diagram can eliminate information uansmis- 
sion links among modules at the same level (lamal links). Such systems are referred to as network 
systems (NS); a flexible wing with a pair of active control surfaces at the leading and trailing edge, 
Fig.12 (top), d e s c n i  in ref.17 is an example. The modules representing the wing are 
Aerodynamics, Strucnaes. and Controls. They are coupled by infomarion links defined in the 
diagram in Fig.12 (boaom). There are no rational nasons for placing any of these modules above 
the othas ina hierarchy andnoneof the links may be severed,so the rhre!e modules must be treated 
as forming a one-level, non-hierarchic, coupled system. In a system of this type, changing a design 
variable that directly affect only one part of the system may have indirect, but significant, 
repercussions throughout To account for that effect a method has bem developed in rcf.7 for 
calculation of the system behavior sensitivity with respect to design variables to guide the design 
dCCiSiOnS. 

de form a i  o n 

I STRUCTURES kq XERODYNXMICS I 
' loads 

stress pressurc 
hinge 
moments 

Y UCI 

Figure 12. Actively conmlled, flexible wing (top)and its system representation (boaom) 

System Sensitivity Analysis 
The wing in Fig.12 is an example by which to introduce the system sensitivity analysis from ref.7. 

The example has only three modules but that is enough to seea pattern that can be extended to any 
number of modules. The modules pomayed in Fig.12 (bottom) are regarded as input-twuqwt 
converters, and are labeled A, S, C for Aerodynamics, Structures, and Controls, respectively. Their 
respective output vectors of the behavior variables are Ya, Ys, and Yc. Input into a module 
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comprises the design variables Xi (elements of vector X )  and the elements of vectors Y that may 
be cross-fed from other modules. From a mathematical viewpoint, a module is a set of equations 
which, when Satisfied, yield a null right-hand-side. Together, the equations corresponding to each 
module in the system form a set which is internally coupled by the output-to-input cross-feeding. 

The set of equations governing the entire system may be written as: 

N X ,  Ys. Yc), Yo) = 0; 
mx, Yo, Ye), Ys) = 0; 
C(W, Ys, Yo), Yc) = 0; 

The list of arguments for each vector function shows the vector of unknowns (output) last and 
the input vectors grwped in the inner parentheses. The presence of the elements of the X and Y 
vectors in that inner parentheses is selective - not every element of X enters every module as input, 
and the same applies to Ya, Ys, and Yc. The number of unknown elements of the vectors Ya, Ys, 
and Yc must equal the number of equations represented by the corresponding vector functions A, 
S, and C. The equations may be nonlinear so that their solution may require an iterative algorithm. 
Examples of the elements Ya, Ys, Yc are a d y n a m i c  pressure coefficients, srmccural displace- 
ments, angles of the control surface deflections, respectively. For elements of X one may mention 
the wing airfoil geometry variables and the wing planform aspect ratio, the wing s m c m  
cross-sectional dimensions, and the coefficients (gams) in the control law. The vector functions A, 
S, C may be implemented, respectively, as a CFD computer program, a finite element analysis 
program, and a control system analysis program. 

Solution Ya, Ys, Yc of eq.7 describes a behavior of the system for a given X and the object of the 
sensitivity analysis is to obtain the total derivatives, dY/dXi. of the v e c m  Y with respect to design 
variables X. referred to as the system sensitivity derivatives. Finite differencing to obtain these 
derivatives is impractical for large systems for the reasons of computational cost. potentially poor 
accuracy, and organizational inenia (each module may be operated by a separate group of 
speczihsts). To bypass these difficulties, a new algorithm for system sensitivity analysis was 
inuoduced in ref.7. 

The algorithm calculates the system sensitivity derivatives from a set of equations derived l k m  
the implicit function theorem. Regardless of the nature of 4 . 7  (nonlinear, transcendental. etc.), the 
sensitivity equations are always linear, algebraic, simultaneous equations: 

where the matrix of coefficients M is composed of the diagonal identity submatrices and 

[MI= [ -;u I -Jsc] 

offdxagonal submamces of the partial sensitivity derivatives (the Jacobian mamces): 
-Jas-Jac (9) 

- J a  -Jcr 1 

To illustrate the meaning of the off-diagonal mamces, the Jas is a Jacobian of the partial sensitivity 
derivatives - an Na*Ns matrix - of the Na pressure coefficients output from A with respect to the 
Ns wing structunl deflections input into A from S. The i-th column of Jas comprises the partial 
derivatives with respect to the j-th displacement 

The nght-hand-side vector is composed of the partnl derivatives of the outputs Y a  Ys. and Yc 
with respect to one particular design variable, so that the solution vector dY/dXi contains 
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derivatives of the coupled system A, S, C yith respect to that variable. For many design variables. 
eq.8 may be efficiently solved with many right-hand-sides by generating and factoring the matrix 
M only once and, then. backsubstituting each rhs vector over the factored h4. 

The partial derivatives in M and the xis vector are, by definition. calculated as a separate task for 
each module, A, S. C by any specialized disciplinary method, including semi-analytical algorithms, 
finite differencing, and even experiments. Resorting to finte differencing in this task is still 
advantageous comparing to finite difFerencing on the entire system analysis. Among the major 
engineering disciplines, the theory and practice of sensitivity analysis is the most advanced in 
structures (ref.18) but has begun taking hold in other disciplines as well (ref.19). In aerodynamics, 
ref.17 demonsaated feasibility of finite differencing in a large application. and a semi-analytical 
approach was formulated in ref20. 

The system sensitivity derivatives, dY/dXi, obtained from eq.8 fully account for al l  the couplings 
in eq.7. As the number of modules in eq.7 increases, the dimensionality of eq.8 incrtases 
accordingly but M tends to become block-sparse because, usually, not every module is linked to 
every other one and wherever a link is missing so is the corresponding off-diagonal Jacobian. 
Similarly, the rhs vector for a particular design variable, Xi, has null elements wherever that 
variable does not directly affect the vectors Y. As pointed out in ref.7, the dimensionality of eq.8 
critically depends on how many output elements are cross-fed to input among the modules. For 
the method to be practical in large applications, one may have to carefully h u t  the number of such 
cross-fed elements. For instance, the wing finite element analysis in S may output thousands of 
cisplacements. However, to capture the elastic deformation effect on the aerodynamic loads 
computed in A. one may condense the deformation information by, say, using only a few 
cisplacement functions whose amplitudes are input into Aas an update on the deformed wing shape. 
Then, the partial derivatives of the pressure coefficients need to be computed with respect to only 
those few amplitudes instead of the thousands of the finite element model displacements. 

System Sensitivity Applications Examples 
To close the discussion of the system sensitivity, a few examples for dY/dXi are in order. The 

derivative of the wing drag coefficient with respect to a cover panel skin thickness is an example 
of a quantity that depends on the aerodynamic loads-suuctural deformations coupling. The 
corresponding pamal derivative is zero. The same derivative with respect to a particular coefficient 
in the control law is another example that involves interaction of al l  three modules in the system 
shown in Fig. 12 (boaom). Again, the corresponding pamal derivative is zero. However, the drag 
coefficient derivative with respect to the wing sweep angle exists both as a partial derivative 
a Y / a i  - the angle directly affects aerodynamics - and as a total derivative dY/dXi reflecting the 
interaction of all three modules. so that, in general the pamd and total derivative values are 
different Finally, if the system f h m  Fig.12 was augmented by the aircraft performance analysis 
module, one could extend the 4 . 8  paftem to calculate such performance derivatives as range or 
payload with respect to the wing aspect ratio, accounting for the trade-off of the structural weight 
vs. the aerodynamic drag of a flexible wing with active control. 

The strength of the couplings of the modules in a system may create a drastic difference between 
the partial and total derivatives as shown in Fig.13 from ref2l. The ordinate is a flexible wing 
trimmed angle of attack defined as the incidence angle of the wing root chord needed to generate 
a specified amount of lift. The abscissa is the wing forward sweep (negative degrees). The graphs 
for the rigid and flexible wing are marked with squares and circles, respectively. The uimmed angle 
of anack derivatives at an arbitrary value of 20 degrees of the sweep angle are visualized by the 
slopes of the tangents. In this system of two interacting disciplines - Aerodynamics and S t r u c m  
- the partial derivative predicted by Aerodynamics only computed for the rigid Wing dif€ers not 
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only in value but also in sign lrom the total derivative obtained for the flexible wing. In such a 
case, reliance on the pamal derivatives may completely misguide design decisions. 

The usefulness of the system sensitivity derivatives as a guide in the design process depends on 
the nonlinearity of the system behavior. Smng nonlinearity compels one to proceed in small steps, 
frequently updating the function and derivative dara by re-analysis. Flutter sensitivity results 
reported in ref.22 are encouraging in this regard since they show flutter speed functions as smooth, 
and only mildly nonlinear over broad intervals of the design variables despite complex interaction 
of stNcMal dynamics and unsteady aerodynamics. A typical example is reproduced in Fig.14. 
Results of a similar nature were given in ref.17 for a flexible. actively controlled wing such as the 
one shown in Fig.12 

Sensitivlty Analysis vs. Parametric Study 
Since in current engineering practice, sensitivity i n f o d o n  is usually sought by paramemc 

studies, it will be useful to compare such studies with formal sensitivity analysis. A typical 
paramebic study for an example of a propeller would call for repeated analysis to generate the 
propeller efficiency data points to which one may fair a curve as in Fig.15 (left) for the diameter 
as one of the design variables. The plot shows the nature of the function at a glance in the entire 
interval of interest and reveals the extrema, providing instant insight However, if there are more 
design variables, for instance, the blade pitch and taper, the number of c w e s  to look at quickly 
escalates combinatorially beyond the limits of human comprehension, and the attendant analysis 
cost also becomes excessive. 

Design Blade 
taper 92 r 1 

Efficiency, 84 A 
percent 

I I 
6 7 8 9  

Propeller 

A 
I Pitch 

Rate of change 

Design 

Diameter 
diameter, ft 

Rgure 15. ?Lpical paramemc study results vs Sensitivity analysis results. 

00 the other hand, sensitivity derivatives of the propeller efficiency with respect to the three 
design vanables mentioned above may be computed for a single design point (a setting of all the 
variables) for all the variables at a cost that does not explode combinatorially with their number. 
The derivatives may be interpreted as the components of the propeller efficiency gradient vector 
(maximum rate of change), shown in Fig. 15 (right). The vector points the direction of the efficiency 
increase and may be used as input into a formal optimization algorithm. However, the vector Carries 
only a local infomarion and the overall shape of the function remains hidden to be derermined 
only by a stepby-step exploration in the pointed direction. Thus, the two methods provide different 
types of information and complement each other. 

System Sensitivity Analysis Applied to Entire Aircraft 
The system sensitivity analysis algorithm outlined above may be applied to an entire aircraft as 

pointed out in ref.8. For example, consider a typical commercial, subsonic rransport aircraft design 
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Figure 16. Aircraft design process arranged sequentially. 

p roce~~  whose flowchart reproduced from ref23 is displayed in Fig.16. The process shown is 
sequential and indicates in the top, righanost box that the entire sequence has to be repeated for 
every change of a design variable. However, the flowchart boxes may be cast asa system of coupled 
modules shown in Fig.17, with the arrows indicating the Uansmitted data (examples of dam are 
given in Table 1). Then, the system shown in Fig.17 may be solved for a particular setting of the 
design variables and analyzed for sensitivity. For the sensitivity analysis, the partial derivatives are 
computed for each module, and entered into equations analogous to eq.8: 

In the above, the numerals refer to the module numbers (in circles) in Fig. 17 and the dots in the 
rhs vector indicate that for a particular design variable many elements of that vector are likely to 
be null. The incomplete system coupling is reflected in the block-sparseness of the manix of 
coefficients. 
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, . Climb requirements 
Configuration geometry L data 

X 

Figure 17. Aircraft design process rearranged into a non-hierarchic, decomposed system. 

TABLE 1. EXAMPLES OF COUPLING DATAFOR SYSTEM IN FIG. 17 

Solution of eq. 10 yields the system sensitivity derivatives dY/dXi for as many design variables 
as many right hand side vectors are included, without the need for repeating the entire sequence 
shown in Fig. 16. 

Optimization Guided by System Sensitivity Derivatives 
The system se~lsitivity derivatives may be used by any Nent-guided algorithm to search in 

design space for an improved design. Experience with that type of optimization has begun to 
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accumulate. For instance. the effectiveness of such optimization was reported in ref.24 for a simple 
structure under an impulse load. The sLructure was enhanced with a control system to limit the 
nansient response, and the system was optimized for minimum weight and minimum conwl effort 
in a design space of structural and control design variables. 

Encouraging results were also  ported in ref.25 for a hypersonic aircraft whose side view is 
shown in Fig.18. 'Ihermodynamic efficiency of the propulsion in this aircraft is at maximum when 
the shock wave which emanates from the nose is tangent to the inlet lip as shown in the figure and 
drops off sharply if the shock wave deviates from this tangency position. The shock wave position 
is influenced by the shape of the forebody and its tip strucNral deflection. Since the entire aircraft 
performance is critically sensitive to the propulsion efficiency, the propulsion and performance 
couple to aerodynamics and strucc~pes. System sensitivity guided optimization of the forebody, 
simultaneous for aerodynamic shape and structural sizing, proved effective and led ro a shape 
different from the one o r i g u d y  derived as optimal on the grounds of aerodynamics alone for the 
structure assumed rigid 

<-cy --- -- 
Figure 18. HypemnicaircrafL 

DESIGN PROCESS UNIFlED BY SYSTEM SEN- ANALYSIS 
The system sensitivity derivatives may be said to form a mathematical model of design that 

provides answers to the "what if' questions that pervade the design process. They may also be 
regarded as means for quantitative communication among the groups of specialists in a design 
organization, informing how the design decisions in one discipline or subsystem may affect other 
disciplines and the system as a whole. In general, the infoxmation conveyed by the system 
sensitivity derivatives has not been available at the advanced design stages under the current 

When that information is practical to obtain owing to the analysis based on 4 . 8 ,  it should be 
possible to organize design process around it in a manner described in reF.8 and depicted in Fig.19. 
The bubbles labeled with the names of disciplines symbolize groups of specialists using their own 
computational and experimental tools to output information about the present state of design. Each 
group's task extends to include computation of the sensitivity derivatives of their output with 
respect fo the inputs received from the other groups and with respect to the design variables, 
assuming a collective agreement on the cross-fed inputs and design variables. 'The derivatives are 
placed as partial derivatives in the framework of the system sensitivity equations (eq.8.10) from 
which the system sensitivity derivatives accounting for the inter-disciplinary couplings are ob- 
tained. 

The disciplinary specialists who conmbuted the partial derivatives examine the system deriva- 
tives to see how the design can be improved by changing the design variables. Chances are that 
the system sensitivity derivatives will show some design variables as distinctly more influential 
than others. If so, the desirable changes of the design variables may be apparent, and it may also 
become obvious how to prune the list of design variables. This is a judgmental use of the system 
sensitivity derivatives. On the other hand, the derivatives may also be input into a search algorithm 

practice. 
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to execute a stage of formal optimization. within bounds guarding against excessive extrapolation 
errors. The judgmental and formal means of improving the design may reinforce each other. Either 
way, the decision how to impove h e  design is made considering simultaneously its impact on the 
system as a whole and on al l  the disciplines and subsystems involved. 

Approximate design 
model dY/dX 

Improved d e s i g n v  

e 
e 

Figure 19. Design process organized around the system sensitivity analysis. 

Improving the design will altemate in an iterative loop with updating of the system analysis and 
sensitivity analysis as required by nonlinearity. The caveat is that the system sensitivity derivatives 
are meaningful only with respect to the continuous variables of the panic& design concept under 
consideration. They cannot @ct the effect of a jump to another discretely different concept (like 
changing the engine location from under-the-wing to under-the tail), therefore, judgment must be 
a pan of the process. However, when there are competing design concepts, each may be optimized 
by the above process to reveal its potential for a fair comparison. 

The above method may be used at all stages of design process to clearly allocate disciplinary 
tasks and to compress the schedule by allowing concmnt work on the tasks, while preserving the 
system couplings with mathematical rigor. Moving to the next more advanced stage of design 
process would not require any change of the method only an increase in the analysis depths. Thus, 
in contrast to the present practice, uniformity of the design process organization would be achieved 
throughout its stages. Unlike in the currently prevailing sequential design process, the uniform 
approach would make it possible to retain more design freedom in the later design stages where 
more is known about the design. The design closer to theoretical optimum should be the ultimate 
benefir 
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